Lessons, Lore, and Legacies of the 1992 Landers Earthquake

SCEC.org/webinar/landers30

Agenda

Mark Benthien, Southern California Earthquake Center
Welcome and Introduction

Dr. Susan Hough, United States Geological Survey
1992 Landers Earthquake Sequence: Science Lessons Learned

Division Chief James Topoleski, San Bernardino County Fire Department
Emergency Response Following the Landers Earthquake

Local Perspectives
Gary Daigneault, News Director, Morongo Basin Broadcasting Corp (Z107.7FM)
Chris Gubler, Gubler Orchids
Gino Prudholm, The Church of Jesus Christ of Latter-Day Saints

Prof. Gregory Beroza, Stanford University
30 Years of Earthquake Science: Legacies of Landers

Q&A
The 1992 Landers Earthquake Sequence: Lessons

Susan Hough
US Geological Survey, Pasadena, California

22* April 1992 Joshua Tree Earthquake
“Rattled Nerves”

“I just want to go back to Germany,” said German tourist Liane Drees, who spent the night in a Desert Hot Springs motel with her eyes on the door.

Earthquake Response

- March 1, 1992: Start working at USGS in Pasadena
- April 23, 1992: Felt earthquake
- April 24, 1992: Deployment
 - Morongo Valley dense array
- June 23, 1992: Visit to NY
- June 27, 1992: Return to California
- June 28, 1992, 4:57am -- Earthquake!
- > June 28: Data retrieval & analysis
High alert

Scientific Response

- Seismic network
- No surface rupture
- Portable seismometers
- Precursor to San Andreas event?
28 June, 4:57am PST: Landers
Lessons from Landers

• Complexity of earthquake-earthquake interactions
• Remotely triggered earthquakes
• Complexity of earthquake ruptures

Foreshocks, Mainshocks, Aftershocks
Mainshock \rightarrow foreshock ("Parent events")

Big earthquakes \rightarrow Big aftershocks
Aftershock Triggering

Earthquake rupture \rightarrow Static stress change

Remotely Triggered Earthquakes

Earthquake rupture \rightarrow Dynamic stress change
Rupture Complexity

- Johnson Valley – Landers – Homestead Valley – Emerson – Camp Rock faults

- Fault length vs. maximum earthquake size?
1999: The Mojave Awakens

2019: Ridgecrest
Lessons: Complexity

• Earthquake ruptures
• Earthquake-earthquake interactions
• Local and distant triggering
• Protracted sequences
• Plate boundary

Did YOU Feel It?

https://earthquake.usgs.gov/earthquakes/eventpage/ci3031111/tellus
Q&A

The recording of today’s webinar will be available next week at:
SCEC.org/webinar/landers30

Questions?
scecinfo@usc.edu
FIRE/USAR RESPONSE

Historical Perspective

- Response capability has changed over the past 30-years
- Operational Area Support
- Search and Rescue from fire service was strained
 - Big Bear Earthquake absorbed resources
 - Road network impacts
 - Water systems impacted rural environment
 - Specialized personnel and resources limited

Lessons Learned

San Bernardino County Fire

- OES Regional USAR Task Force 6
- Communication System Improvements
- Large mobile water delivery systems
- Emergency Command Support
- Heavy Equipment Capability
It All Comes Down To Preparedness… (Civilian and Government)

We are a State that is replete with natural emergency occurrence:

- Wildfires
- Earthquakes
- Floods

Resiliency:

- 72-hours
- Planning
- Preparedness
- Mindset

Questions?
Q&A

The recording of today’s webinar will be available next week at:
SCEC.org/webinar/landers30

Questions?
sccecinfo@usc.edu

Agenda

Local Perspectives
Gary Daigneault, News Director, Morongo Basin Broadcasting Corp (Z107.7FM)
Chris Gubler, Gubler Orchids
Gino Prudholm, Church of Jesus Christ and Latter Day Saints

Have a short story to share?
Please write a short description in the “Q&A” tool and we may call on you to share.
30 Years of Earthquake Science: Legacies of Landers

Gregory Beroza
Stanford University

Fault Complexity and Earthquake Size

Earthquake Rupture:
- Began on the Johnson Valley Fault
- Jumped to the Homestead Valley Fault
- Jumped to Camp-Rock/Emerson Fault
- Involved other faults to a lesser extent
- Stopped on a straight section of CR

These observations overturned the assumption that earthquake size is primarily limited by fault segmentation.

Sieh et al. (1993)
2016 M 7.8 Kaikōura, New Zealand

Even greater complexity than Landers involving:
- at least 12 large faults
- very different fault orientations
- multiple slip directions

Hamling et al. (2017)

Long-Term Forecasting

Improved modeling of segmentation has had a lasting impact on earthquake rupture forecasting. The unexpected “bulge” at magnitude 6-7 for Los Angeles area earthquake forecasts disappeared once multi-fault ruptures were considered.

Field et al. (2017)
Remote Triggering

Clear observation of a sudden increase in seismicity or "aftershocks" observed as far away as Yellowstone.

This overturned the notion that earthquake interaction is localized to the region that hosted the rupture.

Remote Triggering

Following the 2012 Off-Sumatra earthquake there was a transient increase in moderate earthquakes around the world. Without evidence of remote-triggering from Landers, such effects would likely be discounted.

Pollitz et al. (2012)
Stress Triggering

The Landers earthquake was not on the San Andreas Fault, but it was close enough to impart significant stress on the San Andreas. In this model of that effect:

Areas in the warm colors (yellow-red) were moved closer to failure.

Areas in cool colors (blue to purple) were moved farther from failure.

Stein et al. (1993)

Stress Triggering

The Landers earthquake was not on the San Andreas Fault, but it was close enough to impart enough stress to bring parts of the San Andreas in the Coachella Valley and San Bernardino closer to failure by one or two decades.

Fortunately, no San Andreas Fault earthquake was triggered, but such calculations are now commonly done to quantify changes in hazard due to earthquake interaction. This study raises an interesting question – how do we have confidence in such forecasts?

Stein et al. (1993)
Stress Triggering/Shadowing

Toda et al. (2012)

Stress Triggering

Toda et al. (2012)
Satellite Interferometry

The Landers earthquake saw the first use of satellite interferometry to study an earthquake. The upper panel shows the fringe pattern due to deformation from the earthquake and the lower panel shows a theoretical prediction of that pattern.

Satellite Interferometry (InSAR) is now used routinely to study large earthquakes, slow deformation between earthquakes, as well as volcanoes, glaciers, groundwater withdrawal...

Massonnet et al. (1993)

InSAR Deformation Measurements

Xu et al. (2021)
The 2019 Ridgecrest earthquake sequence, which included M 6.5 and M 7.1 events, is the latest in a series of earthquakes to occur off the main San Andreas Fault plate boundary fault system. Some occurred before Landers, while others like Hector Mine and Ridgecrest occurred after.

Chu et al. (1993)
Q&A

The recording of today’s webinar will be available next week at:
SCEC.org/webinar/landers30

Questions?
scecinfo@usc.edu